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Motivated by recent experiments, in which knots have been tied in individual biopolymer molecules, we use
Langevin dynamics simulations to study the diffusion of a knot along a tensioned polymer chain. We find
that the dependence of the knot diffusion coefficient on the tension can be non-monotonic. This behavior can
be explained by the model, in which the motion of the knot involves cooperative displacement of a local knot
region. At low tension, the overall viscous drag force that acts on the knot region is proportional to the
numberN of monomers that participate in the knot, which decreases as the tension is increased, leading to
faster diffusion. At high tension the knot becomes tight and its dynamics are dominated by the chain’s internal
friction, which increases with the increasing tension, thereby slowing down the knot diffusion. This model is
further supported by the observation that the knot diffusion coefficient measured across a set of different
knot types is inversely proportional d We propose that the lack of tension dependence of the knot diffusion
coefficients measured in recent experiments is due to the fact that the experimental values of the tension are
close to the turnover between the high- and low-force regimes.

1. Introduction 1. The “blob” regime'? f << kgT/l,. In this regime the force

is too low to straighten the chain so that locally, within a blob
of size?® ~kgT/f, the chain behaves as a random coil that is
unaffected by the force. If a knot is tied in such a chain, it will
be likely to collide with other segments of the chain and its
size will fluctuate significantly. Thef = 0 case has been
addressed in refs 16, 21 showing that knot loosening and large
size fluctuations can be important in the unknotting mechanism.

2. The *“elastic regime”. In this regime, the force becomes
high enoughf > ksT/ I, to align the segments of the chain in
the general direction of the force. Thermal fluctuations are
unlikely to cause collisions of different chain segments except
for the monomers constrained within the knot. In this regime,
the knot size is determined by the bending elasticity of the chain
vs the force. Imagine a knot tied in a guitar string. The harder
one pulls at the ends of the string, the smaller the knot. The
higher the bending stiffness (and, consequently, the persistence
length), the larger the knot.

3. The tight knot regime. Finally, when the force becomes
very high, the knot size will no longer significantly change as
its size will be dominated by the repulsive interactions between
the contacting monomers in the knot. This is similar to an “ideal
knot” in a flexible rope, where its size is determined by the
thickness of the rope (see, e.g., refs 7, 22).

The blob regime is not considered in the rest of this paper.
A double-stranded DNA with a persistence length~&0 nm
will be in the blob regime only at forces< kgT/l, ~ 0.08 pN
that are lower than the forces used in the experiments described
in ref 18.

Between the elastic and the tight knot regimes, we commonly
observe a turnover behavior, where the knot diffusion coefficient
first increases and then decreases as the applied tehson
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Molecular knots tied in individual polymer strands have
attracted the attention of many physicists, chemists, and
molecular biologist$.® The importance of knots as topological
defects that affect polymers’ dynamics has been recognized in
a number of contexts. They may, for example, impede DNA
replication (see, for example, ref 2 and references therein) or
lead to long-time memory effects in polymer mé{$.From a
polymer theory perspective, a number of fascinating issues exist
that deal with the scaling properties of random knots (see, for
example, refs 2, 11, 13). Recently, molecular knots have been
created and observed at a single molecule IEV8ln particular,
knots tied in DNA chains with optical tweezers were seen to
undergo diffusive motion, and the diffusion coefficients have
been measured for different types of knbt$hose experiments
have motivated several theoretical and simulation studies of knot
dynamics in polymer&121°Vologodski? has used Brownian
dynamics simulations to study knot diffusion in DNA and found
the computed diffusion coefficients for different types of knots
to agree with the experimental values to within a factor of 2.
Metzler et a2 have presented general theoretical considerations
of different mechanisms that may affect knot mobility. The aim
of the present work is to undertake a more systematic study of
the effects of the knot type, the tension in the chain, and the
polymer’s flexibility on the knot diffusion.

Consider a knot tied in a polymer chain, whose persistence
lengthl, is longer than the distance between two neighboring
monomersy and whose contour length is much longer than
Suppose the two chain ends are pulled apart with a fbrae
the value of this force is increased, three physical regimes are
encountered:
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on the knot is proportional to the numkéiof monomers within o 12
the knot multiplied by the friction coefficien§, per single Vionbonded™ _ Ae[|[——| —
monomer. (A more precise definition of the effective number =y=2 (‘r . )
N of monomers in the knot will be given in subsequent sections). b
The knot diffusion coefficient is then given by the Einstein o 6+1- r.—rl) )
formula: 4 S(‘ : ')
‘ri_rj‘
D= E ) : . ,
N&, whereS(x) is a step function defined as
o . . 1x < 2¥%
In the elastic regime, increasing the tension reduces the knot SX) = { ’ e (6)
lengthN, thereby accelerating the diffusion. As the tight knot 0x>2"0

limit is approached, the increased repulsive interactions among
the monomers within the knot region result in a “bumpier” Langevin equation of the form
energy landscape for the knot translation, which can be

interpreted as an increased “internal frictid&2* This leads to BV + Vyyarg)

slower diffusion. Interestingly, we find here that in the tight e (t) = —&,f(t) — a—s"em + R(Y) (7
knot regime the diffusion coefficient depends only on the knot i

lengthN rather than separately on the chain persistence length
and the tension.

The dynamics of the chain were generated by solving the

wherem is the monomer mass§; is the friction coefficient for
_ . _ . each monomer (whose value is sefgo= 2.0(0%/me) 13, R(t)

In the following sections we will present our data and describe g 5 randomd-correlated, Gaussian-distributed force satisfying
simple theoretical arguments to rationalize our findings. We will e fluctuation-dissipation theorem, andsyeicn= —f(z. — 1)
further show that our results can shed light on some of the js a stretching potential that describes a fofthat pulls the
experimental observations made in ref 18, such as the depenfirst and thel.th monomers apart. Theaxis coincides with the
dence of the diffusion coefficient on the knot type and the direction of the force. In the following, we report all of our
apparent lack of its tension dependence. results using dimensionless units of energy, distance, time, and

. . . . — 2/ \1/2 — i
The rest of this paper is organized as follows. Section 2 force setby, o, 7 = (mo%e)™ andfo = €/o, respectively. Al
describes how the simulations were performed. Our results are0f the simulations were performed at the same temperature equal

presented in Section 3. Section 4 concludes with a comparisonto T = 1.0c/ks. . . . .
of our results with experiments. The presence of a knot in the chain was monitored by using

the program of Harris and Harv&that uses the method of
Vologodskii et ak® to calculate the Alexander polynomial.

2. Methods Animations of the simulated dynamics of knotted polymers are
available as Supporting Information.
The Model. Our model of a polymer chain consists lof= The Diffusion Coordinate. To describe the movement of
90 beads and is described by the potential the knot as a one-dimensional diffusion process, we first need
to specify the coordinate along which it diffuses. Two obvious
V(1 518 = Viong + Voend™ Vionbonded ) choices exist: (i) monitor the projectianof the knot position

on the direction of the applied force, or (ii) monitor the knot
diffusion along the polymer chain by using a discrete monomer

as a function of the positions of each bead. The first term  indexn as the diffusion coordinate. In the limit of a very high
force, the two coordinates are equivalent as the shape of the
L Iri —ri_4l —o\® chain away from the knot region is nearly a straight line. In the
Viond= Z Ko(Ir; — rizql — 0)’12 + k|l————— 3 blob regime, the two diffusion coordinates would be drastically
i= Ab different. Generally, the diffusion projected onto the axisill

appear to be slower than the diffusion along the chain itself. In
is an anharmonic potential that describes bond stretching. Here the range of forces used here, the difference is about 15% for

o is the equilibrium bond lengthAb = 0.255, k, = 100¢/0?, ki the lowest force used.

= 2¢, ande is a parameter that sets the energy scale. We use Choice (i) may be closer to the experimental measurements.
the bending potential However, another, more subtle point should be considered. To

use definition (i), one has to specify the reference frame with
L1 respect to whi_crz is determined. This can b(_a_the laboratory
Voorg=k S kg6 — 0%212 4) frarr_1e, the chain’s center of mass, or the position of one of thg
bend Z ! chain ends. The difference between these should disappear in
"~ the limit of a very long chain, where the translations of the
) o entire chain can be neglected. However, for practical reasons
to vary the polymer’s persistence length by adjusting the value ¢ chain cannot be too long in a simulation, and for chains of
of the dimensionless bending stiffndssHere, k) = 4.8&/rac? finite length all three definitions give different results. The
and@i is the angle between the bond vectars ri—y and—(ri+1 “internal” diffusion coordinate (ii) is, however, uniquely defined
— i), whose equilibrium value i8° = . Finally, excluded  and can be used to determine the time it takes the knot to escape
volume effects are incorporated by using a purely repulsive off the chain ends. For this reason, we use the second choice
potential between the beads that are not bonded: for the diffusion coordinate here while keeping in mind that
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some of the results may be affected by the particular way of - - i
measuring the diffusion coefficient. sl !
Finally, since knots have finite size, we need to specify how
the knot position is described in terms of a single point in space.
To do so, we define the boundaries of the knot regiprand
n,, as illustrated in Figure 1. The knot coordinate along the chain
is then defined as = (n + n;)/2.
Determination of the Knot Diffusion Coefficient. We have
used two methods of computing the knot diffusion coefficient.
The first method uses the relationship

D = [In(At) — n(0)]*I(2At) (8)

where the square of the knot displaceme(at) — n(0) is
averaged over a series of short-time simulations, with the knot
initially located atn(0). Metzler et a2 have considered various
knot diffusion mechanisms and have predicted that the diffusion
should become faster near the chain ends. When the knot is
close to a chain end, it can become untied though a cooperative
motion of the dangling chain segment. This untying mechanism
should become increasingly more likely as the distance from z
the chain ends becomes smaller than the length of the knotrigure 1. Snapshots of the knots of different types studied here.
itself.12 In this regime, however, one cannot view the knot as a Definition of the knot boundaries; andn; is also illustrated.
point object, and eq 8 cannot be used to determine the value of
D. For this reason, the diffusion coefficients reported here have :ffi‘
always been calculated in the regime where such boundary 50
effects could be neglected (i.e., when the knot is sufficiently
far from the chain ends). In this regime, we find that the knot
diffusion coefficient calculated from eq 8 is insensitive to the 40
knot’s initial locationn(0). Furthermore, we found no significant
dependence of the diffusion coefficient on the overall chain 351
lengthL.

An alternative way of determinind is to consider the
probability distributionpes{t) for the timet it takes for the knot
to escape off the ends of the chain, provided that=atO the <«
knot was placed in the middle of the cham{) = L/2. To -~
avoid the boundary effects mentioned above, instead of con-
sidering the entire chain one can specify a chain segmént (( 104 WW
— 1)/2,(L + 1)/2) such that the chain’s extremities are excluded

oo 0
—

T v T v T

A

thf
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from the consideration. We place the knot in the middle of the =] . | '

chain,n(0) = L/2, and follow its dynamics until it reaches one 20 0[&\ M fh% ! p,k MM M{WI‘
of the segment boundaries(t) = (L — 1)/2 or (L + 1)/2, for |l Wu‘ A \Mmff» J&F‘»\J‘V /" W w

the first time. If the motion of the knot can be viewed as free N 151 W Mﬂ w

diffusion, then the probability distributiopes{t) of the timet

it takes to reach a boundary can be obtained by solving the free 104 WMWWMM

diffusion equation with absorbing boundary conditions (see

Appendix A) and the value dD can be obtained from a fit of T T T T T " T " T
0 400 800 1200 1600

the simulategesdt). If the diffusion coefficient along the chain

were not constant or there were a deterministic biasing force t/

driving the knot in the direction of, or away from, the chain Figure 2. (Top) Typical knot trajectories(t) at low and high forces
center, then we would expect to see the simulgigdt) to (k=2 in each case). Circles indicate the stalling events that are observed

deviate from the solution of the diffusion equation with a in the high-force case. (Middle) Fluctuations in the instantaneous knot
length defined as the chain contour lengith— n between the knot

cor!StamD. As .sh.own in Appendix A we could noj[ find any boundaries for the same trajectories. (Bottom) Fluctuations in the
noticeable deviations from the free diffusion model in the range jystantaneous knot lengthas defined by eq 9 for the same trajectories.

of forces studied and the value Dfdetermined this way was

the same as that estimated from eq 8. Furthermore, we foundcnain length used here, the diffusion coefficient in such low-

that the boundary effects due to the chain extremities have NOsgrce |imit cannot be meaningfully extracted from the simula-
noticeable effect omesdt). In other words, the probability for  tions reported here.

the knot to escape off the chain ends is still described well by
the solution of a one-dimensional diffusion equation with a

. : 3. Results
constantD whose value is close to that estimated from eq 8.

A tension in a knotted chain compacts the knot. We expect  Knot Trajectories. Animations of knot trajectories obtained
that the boundary effects predicted in ref 12 would become at two different values of the force are available as Supporting
pronounced at low or zero tension. However, since in this regime Information. In Figure 2, we show the time dependence of the
the knot size would become comparable with the relatively short knot positionn(t) for two typical trajectories, one taken at a
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low-force value and the other at a high-force value correspond- a T
ing to the tight knot regime. In the latter case, stalling events 0041 ° "o -f2 -0-f3 .
are observed, in which the knot becomes trapped in a certain | oo A4 -v-f8
configuration and then escapes it through a thermal fluctuation. N -0 -f10 - -f£12
Also shown in this figure is the time dependence of the 0.03 X Sy
instantaneous knot length for the same trajectories. Two - yd \ékgig\
definitions of the knot length are used, one being simply the D ook y Z><a i
contour length of the chain between the knot boundaries; ' // 4 \u:‘é:g\o:e
n, and the other is based on the sliding knot model and is P <

defined below. It is seen that the knot size can fluctuate 001+ ¢ /O/ 4

<&
<

significantly and that the knot tends to be tighter during the ,
stalling events. N
Dependence of the Diffusion Coefficient on the Knot 0.00
Length. Several knot diffusion mechanisms have been proposed
by otherst218 involving either cooperative motions of large
portions of the entire chain or local motions of a knot region. b T T T 1 ™ >
&

If the knot translation involves concerted motion of a chain 450 |
segment that contair’ls monomers, then the effective friction Y ,ff; ‘
coefficient for this segment should e~ N&p, where&y is the -a-f4 | a0}
friction coefficient per one monomer (defined in eq 7). We then -9 S8 »
X e . 300 -0 -f10 pas i

expect the effective knot diffusion coefficient to be ap- -4 -f12 20t . ]
proximately given by eq 1. If the local mechanism dominates, -
then N should be of the order of the knot length, that is, the 0 .
number of monomers engaged in the knot. 150 :

To test the validity of eq 1, we then need a way of measuring
the effective knot lengtiN. _One possibility is to simply use the %@m@ﬁ%%w@ou-n a o
contour length of the chain between the knot boundaries;, ok . X ) ) ) L
n.. The problem with this is that our purely geometric definition 10 15 20 25 30 35
of the knot boundaries is somewhat arbitrary. While the average N
knot positionn = (n + n,)/2 is not significantly affected by  Figure 3. (a) The dependence of the diffusion coefficient of the knot
the precise choice of the boundaries, this is not necessarily trueof type 3 on the bending spring constakfor different values of the
for the knot length. tensionf. The units are explained in the Methods section. (b) Same

: . . data as in (a) plotted as the effective friction coefficiént ksT/D vs

A more phySICa.”y meaningful def_ln_ltlon of the knot Iengt_h the knot lengthN. The dashed line is given by the equatidre &N,
that we use here is based on the sliding knot model describedyhereg, is the friction coefficient per one monomer (cf., eq 7). Inset:
in Appendix B. In this model, the knot slides along the chain same plot with thet scale blown up.

without changing its shape while the chain ends are not moving.

Even in this simple model, different chain segments move with and the knot lengtiN becomes larger. According to eq 1, this
different velocities siN cannot be Slmply taken to be the number should result in a decreasing value@fIndeed, we observe a
of monomers that move. As shown in Appendix B, the total monotonically decreasin®(k) when the applied tensiohis
viscous drag force that acts on the chain when the knot movessyfficiently low. For highf, the observed dependenbk) is

with a velocity v is equal to—£oNv, whereN is given by non-monotonic, showing a maximum at a certain value of the
chain stiffness.
N = |_(1 — M{) 9) In Figure 3b we plot the effective friction coefficiedt=
AZ,notte keT/D as a function of the knot lengtN for the same data.

According to eq 1, we expeétto be proportional tdN. Indeed,

Here AZgotted aNd AZunknottedis the extension of the chain with ~ the dependencé(N) is close to a straight ling(N) = £oN
and without knot, respectively. In other words, the effective (Shown as a.dash.ed linein th.ellnset of Figure 3b). for knots that
length of the chain segment involved in the knot motion is the are not too tight (i.e., for sufficiently larghi). For tight knots
difference between the lengths of the unknotted and knotted (Small N) the behavior of5(N) is entirely different, showing
chains. Coincidentally, this measure of the knot length was usedthe opposite trend for more compact knots to diffuse more
in ref 18 to estimate the knot |ength from experimenta| DNA SIOle. This behavior of tlght knots will be discussed below.
knot images. While eq 9 does not give the correct length of the  Dependence of the Diffusion Coefficient on the Tension
knotted chain segment?8 it turns out to be the proper knot in the Chain. The tension dependence of the diffusion coef-
length measure to be used in eq 1, at least within the sliding ficient is shown in Figure 4a for different values of the bending
knot model. Since, unlike the sliding knot model, the chain spring constank. When the chain is sufficiently stiff (i.e., its
fluctuates in our case, the knot length measure that we adopt inpersistence length is longl is a non-monotonic function of
practice uses the average chain extensions measured along thine tension. The initial rise dD(f) at low forces is consistent

direction of the force foAZotted @Nd AZynknotted The instanta- with eq 1 since an increased tension tightens the knot thus
neous knot length used in Figure 2 is obtained by using the reducing its lengtiN. This is further illustrated in Figure 4b,
instantaneous value @ znoteqinstead of its mean. which shows the effective friction coefficiedtas a function

To vary the knot lengthN we now change the bending of the knot lengthN for the same data. For stiff chains and
stiffnessk (see eq 4) while keeping the applied tension constant. large N (i.e., low forcef), we observe thaf is an increasing
The resulting dependence of the knot diffusion coefficienkon function of N, behaving very similarly to the dependeri{&\)
is shown in Figure 3. Akis increased, the chain becomes stiffer seen in Figure 3b.
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Figure 4. (a) The dependence of the diffusion coefficient of the
knot of type 3 on the applied tensiori for different values of
the bending spring constakt (b) Same data as in (a) plotted as the
effective friction coefficientsT/D vs the knot lengtiN. The dashed
line is given by the equatioh= &N, where&; is the friction coefficient
per one monomer (cfeq 7). Inset: Same plot with th& scale blown
up.

Both in Figure 3b and in Figure 4b, we find that for certain
values of the bending stiffness and the force, the effective
friction coefficient is somewhdbwerthan& = &N (the points
below the dashed line). An effective friction coefficient that is
higher than5gN can be attributed to the contributions from the
internal friction caused by monomer interactions within the knot,
as those are neglected in eq 1. However finding the effective
friction coefficient to be lower thaggN is somewhat surprising.
Consideration of chain fluctuations ignored in the sliding knot
model may explain this observation. In particular, fluctuations
of the knot size effectively speed up the diffusion. Indeed, if
the instantaneous knot length fluctuates significantly (cf.,
Figure 2) then the observed value DBf will be the mean
diffusion coefficienttDO= (kgT/&)[L/NUI If, for instance, the
distribution ofN is Gaussian (an approximation that is consistent
with simulations), thenmDOwill be higher than an estimate
obtained from eq 1 by using the mean knot length. The fairly
small diffusion speedup found here is roughly consistent with
an estimate ofDJthat takes the knot size distribution into
account. We note, however, that the deviations of real knot
dynamics from the sliding knot model cannot be simply
accounted for by allowing a distribution of the knot sike
because both fluctuations of the knot itself and those of the

Huang and Makarov

Diffusion of Tight Knots. The knot diffusion coefficient
depends on the properties of the chain (such as the bending
stiffnessk) and the tensio. However, in the tight knot limit
(i.e., smallN) D depends only on the knot si2¢ rather than
separately on the tension or the chain flexibility. That is, if we
plot D (or &) vs N(k,f) for variousf andk, all these dependences
will collapse onto a single curve. In particular, the curZ@s)
plotted in Figures 3b and 4b are practically identical for
11. Moreover, in this limit, unlike the larg®l case, more
compact knots move more slowly. How can we rationalize these
findings?

When the knot is tight, “internal friction” of the chain, rather
than viscous friction due to the solvent, dominates its dynamics.
The microscopic origin of such friction is the “bumpiness” of
the energy landscape of the knot caused by the intrachain
interactions324The knot moves via activated barrier crossing
from one local minimum to another. Indeed, stalling events
where the knot is trapped in a local minimum configuration
are readily observed in Figure 2 for the high-force case. The
barriers encountered in this process depend on the magnitude
of the tension in the chain. The higher the fofcéhe rougher
the energy landscape and consequently the slower the diffusion.

Consider now the interactions within a tight knot. The forces
associated with the bending potent&glngin this limit become
small as compared to the contribution from the repulsive
potentialVionbondes Which prevents the knot from becoming even
tighter. A compact knot is a physical model of an “ideal” knot
whose size can no longer be redut&ekxcept that our compact
knots are somewhat compressible since the repulsive interactions
are continuous rather than hard-wall-type. The energy landscape
in this limit is essentially determined by the repulsive interac-
tions of the monomers within the knot, and it seems plausible
that it would be determined only by the knot size.

Dependence of the Diffusion Coefficient on the Knot Type.

We have computed the diffusion coefficient for several knot
types (shown in Figure 1) and for different valueskandf.
The results are shown in Figure 5, where the effective friction
coefficienté = kgT/D is plotted as a function of the knot length
N. The diffusion of the knots of type135;, 5, and 7% is well
described by the relationship N. The bulkier the knot, the
slower it moves. Moreover, the rat&{N)/N for low forces is
very close to the friction coefficieni, for a single monomer,
again pointing to the local diffusion mechanism described by
eq 1, which assumes a cooperative motiorNahonomers in
the knot region. The knot of typg 4eems to be an outlier except
at high forces, possibly because of the knot fluctuations or a
higher effective internal friction for this knot.

4. Discussion

Since our polymer model does not directly describe a DNA,
to compare our results with the experimental findings of ref 18
we use reduced units of length and force. The characteristic
length scale is set by the polymer’s persistence lethgtnd
the characteristic force is set liyy= kgT/l,. Assumingl, = 50
nm, the forces used by Bao, Lee, and Quake are in the fange
~ (1 — 25)f.. For such forces, they found the knot length to be
N = 6ly(for the knot of type 3. To make a crude comparison
with our results, consider the cake= 1 in Figure 4. At this
value of the bending stiffness, the persistence length of our
polymer is ~5 monomers, which gives. ~ 0.2 in the

unknotted segments of the chain affect the instantaneous valuedimensionless units used in Figure 4a. We see that the

of N and also because knot fluctuations on a time scale
comparable with that of the knot diffusion violate the assump-
tions of the sliding knot model.

experimental range of forces roughly correspond§ 05 in
Figure 4a. The highest force in this range is close to the
maximum ofD(f).
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Bt 25r Appendix A: Distribution of the Knot Escape Time in

the Free Diffusion Model

Suppose the knot's dynamics can be described as
one-dimensional motion along the knot coordinateThe
knot starts in the middle of the chainat= 0 and is monitored
until it reaches one of the chain boundarie§) = £I/2.

We are interested in the probability distributipp(t) of the

60l yLr g0l 4.5 time t it takes the knot_to escape the _chain segmefMZ(,I/Z)-
between the boundaries. To find this, we first calculate the

probability densityp(x,t) for finding the knot atx at timet

provided that it disappears irreversibly upon reaching the

45 0 15

90 7, 120} 1

301 40+

= k=2, f56 = k=2,/510 boundaries. This is the solution of the one-dimensional diffusion
0 . . . 0 . , . equation
0 10 20 30 0 10 20 30
op(x.t 2
. N N _ Y _ 5 0 iy (A1)
Figure 5. The effect of the knot type on its diffusion. The effective at »e
friction coefficienté = ksT/D plotted as a function of the knot length
for different types of knots and for different values of the tension  \yith the initial condition
and of the bending stiffneds The straight lines shown are least-square
fits with the knot type 4 excluded and are given ky= aN, wherea p(x,0) = 5(X) (A2)

=2.13, 2.13, 3.26, and 5.33 fok,{) = (1,2), (2,2), (2,6), and (2, 10),

respectively. and absorbing boundary conditionsxat +1/2. The solution

can be conveniently expressed as a series:

To further validate this comparison we note that the knot o (x— nl)z
length in this range of forces i ~ 3l, for the lowest force p(x.t) = z (—1)" exg —
used (cf., Figure 4b), which is comparable with the experimental dorDL e 4Dt
knot length (measured in units gj.

These considerations suggest that the lack of tension depen- The probability distribution of the knot escape time can be

dence of the diffusion coefficient reported by Bao, Lee, and expressed in terms of the knot survival probability:
Quaké®may be due to the fact that the experimental forces were

(A3)

close to the turnover regime, wheras we see from Figure sty = (" p(xt) dx (A4)
4a—the force dependence is weak. -2 T

The dependence of the effective friction coeffici§ran the Ip(x.t) Ip(x.t)
knot type observed in our simulations is very close to that Pesdt) = —dS/dt = _D[ X =2 T ax x—I/2] (A5)

reported in the experimental study (see Figure 3 in ref 18). Both

the experimental curvé(N) and the dependences shown in
Figure 5 are close to linear. Moreover, the deviationg(®4)

Figure 6 gives an example of the distribution of the knot
escape time determined from a simulation. The solid line is a

from a straight line follow the same pattern. Our results are fit that uses eqs A3A5, with D being used as a fitting

also consistent with the earlier simulation study by Vologodksii,

parameter. The free diffusion model fits our data very well.

which includes electrostatic effects in DNA.
As seen from Figure 5, the linear dependefdg N holds App.endix B: Drag Force on the Knot Region in the
both at low forces (i.e., the elastic regime) and at high forces Sliding Knot Model

(tight_knot_regime),_although the slopes are different. Therefore  ~gnsider a continuous string with a knot tied in it. Here, we
the linearity of this dependence alone cannot be used 10y assume that the knot slides along the string without
distinguish between these two regimes and to establish Whetherchanging its shape, as illustrated in Figure 7. The chain segments
or not DNA knots are close to ideal. that are far away from the knot region are not moving; in
While the simple model considered here provides useful particular, the chain ends are at rest. Assuming that the knot
insights into the general problem of knot diffusion in tensioned moves with a velocity, we would like to calculate the total
polymers, a number of potentially important issues pertinent to viscous drag force that acts on the chain. To do so, it is
DNA and proteins have been left out, particularly the effect of convenient to switch to a moving reference frame, in which
twisting, electrostatic effects, or of specific intrachain interac- the knot itself is at rest while each given point of the string is
tions on the knot dynamics. These effects may be particularly moving with a constant velocity along the same curve
important in tight knots, where the strong constraints applied (x(s),y(s),z(s)), which defines the constant shape of the knot.
to the knot monomers may lead to high sensitivity of the knot Heres = s — ot is the position of the point measured along
dynamics to the details of the molecule’s energy landscape. Wethe string. The shape of the knot curve is such th@},{(s),z(s))
plan to address these issues in our future studies. = (0,02 far away from the knot region. In other words, the
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Figure 6. The probability distribution of the knot escape time fitted
by using the free diffusion model (solid line). The values of the bending
stiffness and the force in the simulation &re 2, f = 4. The knot was
placed in the middle of the chain and monitored until its distance from
the middle attained the valugt) = £1/2, wherel = 40. The value of
the diffusion coefficient obtained from this fit @ = 0.0296.
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Figure 7. The sliding knot model. The time dependence of the position
of a selected point on the string is shown.

string is a straight line aligned along ttzeaxis everywhere
except in the vicinity of the knot.
The absolute value of the velocity of any given point of the
string in the moving frame is equal tovhile the velocity vector
is given by
(@,,0,,0

X1y

(B1)

ds{dx dy dz dx dy d
~ dt\ds ds' d (dsdsd

The velocity of the same point in the laboratory frame is

u = (u,u,u,) = (G,0,0,) + (0,0p) =
_(dx dy dz
(ds ds' ds )

The total viscous drag force on the chain is then given by

=7, J; dsu(9) (B3)

whereys is the friction coefficient per unit length of the string

drag

and 1 and 2 denote the chain ends. Combining eqs B2 and B3

we find

farag= —722(0,0, [, (ds — d2)) = —y(0,0A7) (BA)

Huang and Makarov

whereAz = AZunknotted— AZknottediS the difference between the
end-to-end distance of the knotted and unknotted chains. The
drag force is along the-axis, and its value is proportional to
the difference between the extension of the knotted and the
unknotted chains.

For a discrete chain that consistsdlainonomers we can write
vs = Eol/ AzZjnknotted (Where &y is the friction coefficient per
monomer) so that

f —&,Nv (B5)

drag =

where the effective number of monomers involved in the knot
motion is given by

(B6)

N = L(l _ Azknotted)

AZunknotte

Supporting Information Available: Two animations of
knot diffusion. This material is available free of charge via the
Internet at http://pubs.acs.org.
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