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Motivated by recent experiments, in which knots have been tied in individual biopolymer molecules, we use
Langevin dynamics simulations to study the diffusion of a knot along a tensioned polymer chain. We find
that the dependence of the knot diffusion coefficient on the tension can be non-monotonic. This behavior can
be explained by the model, in which the motion of the knot involves cooperative displacement of a local knot
region. At low tension, the overall viscous drag force that acts on the knot region is proportional to the
numberN of monomers that participate in the knot, which decreases as the tension is increased, leading to
faster diffusion. At high tension the knot becomes tight and its dynamics are dominated by the chain’s internal
friction, which increases with the increasing tension, thereby slowing down the knot diffusion. This model is
further supported by the observation that the knot diffusion coefficient measured across a set of different
knot types is inversely proportional toN. We propose that the lack of tension dependence of the knot diffusion
coefficients measured in recent experiments is due to the fact that the experimental values of the tension are
close to the turnover between the high- and low-force regimes.

1. Introduction

Molecular knots tied in individual polymer strands have
attracted the attention of many physicists, chemists, and
molecular biologists.1-15 The importance of knots as topological
defects that affect polymers’ dynamics has been recognized in
a number of contexts. They may, for example, impede DNA
replication (see, for example, ref 2 and references therein) or
lead to long-time memory effects in polymer melts.9,16 From a
polymer theory perspective, a number of fascinating issues exist
that deal with the scaling properties of random knots (see, for
example, refs 2, 11, 13). Recently, molecular knots have been
created and observed at a single molecule level.17,18In particular,
knots tied in DNA chains with optical tweezers were seen to
undergo diffusive motion, and the diffusion coefficients have
been measured for different types of knots.18 Those experiments
have motivated several theoretical and simulation studies of knot
dynamics in polymers.8,12,19 Vologodskii8 has used Brownian
dynamics simulations to study knot diffusion in DNA and found
the computed diffusion coefficients for different types of knots
to agree with the experimental values to within a factor of 2.
Metzler et al.12 have presented general theoretical considerations
of different mechanisms that may affect knot mobility. The aim
of the present work is to undertake a more systematic study of
the effects of the knot type, the tension in the chain, and the
polymer’s flexibility on the knot diffusion.

Consider a knot tied in a polymer chain, whose persistence
length lp is longer than the distance between two neighboring
monomersσ and whose contour length is much longer thanlp.
Suppose the two chain ends are pulled apart with a forcef. As
the value of this force is increased, three physical regimes are
encountered:

1. The “blob” regime,12 f , kBT/lp. In this regime the force
is too low to straighten the chain so that locally, within a blob
of size20 ∼kBT/f, the chain behaves as a random coil that is
unaffected by the force. If a knot is tied in such a chain, it will
be likely to collide with other segments of the chain and its
size will fluctuate significantly. Thef ) 0 case has been
addressed in refs 16, 21 showing that knot loosening and large
size fluctuations can be important in the unknotting mechanism.

2. The “elastic regime”. In this regime, the force becomes
high enough,f > kBT/ lp, to align the segments of the chain in
the general direction of the force. Thermal fluctuations are
unlikely to cause collisions of different chain segments except
for the monomers constrained within the knot. In this regime,
the knot size is determined by the bending elasticity of the chain
vs the force. Imagine a knot tied in a guitar string. The harder
one pulls at the ends of the string, the smaller the knot. The
higher the bending stiffness (and, consequently, the persistence
length), the larger the knot.

3. The tight knot regime. Finally, when the force becomes
very high, the knot size will no longer significantly change as
its size will be dominated by the repulsive interactions between
the contacting monomers in the knot. This is similar to an “ideal
knot” in a flexible rope, where its size is determined by the
thickness of the rope (see, e.g., refs 7, 22).

The blob regime is not considered in the rest of this paper.
A double-stranded DNA with a persistence length of∼50 nm
will be in the blob regime only at forcesf < kBT/lp ∼ 0.08 pN
that are lower than the forces used in the experiments described
in ref 18.

Between the elastic and the tight knot regimes, we commonly
observe a turnover behavior, where the knot diffusion coefficient
first increases and then decreases as the applied tensionf is
increased. This behavior can be understood if one assumes that
the knot diffusion is accomplished via concerted motion of a
local knot region12 so that the total friction drag force that acts
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on the knot is proportional to the numberN of monomers within
the knot multiplied by the friction coefficientê0 per single
monomer. (A more precise definition of the effective number
N of monomers in the knot will be given in subsequent sections).
The knot diffusion coefficient is then given by the Einstein
formula:

In the elastic regime, increasing the tension reduces the knot
lengthN, thereby accelerating the diffusion. As the tight knot
limit is approached, the increased repulsive interactions among
the monomers within the knot region result in a “bumpier”
energy landscape for the knot translation, which can be
interpreted as an increased “internal friction”.23,24This leads to
slower diffusion. Interestingly, we find here that in the tight
knot regime the diffusion coefficient depends only on the knot
lengthN rather than separately on the chain persistence length
and the tension.

In the following sections we will present our data and describe
simple theoretical arguments to rationalize our findings. We will
further show that our results can shed light on some of the
experimental observations made in ref 18, such as the depen-
dence of the diffusion coefficient on the knot type and the
apparent lack of its tension dependence.

The rest of this paper is organized as follows. Section 2
describes how the simulations were performed. Our results are
presented in Section 3. Section 4 concludes with a comparison
of our results with experiments.

2. Methods

The Model. Our model of a polymer chain consists ofL )
90 beads and is described by the potential

as a function of the positionsr i of each bead. The first term

is an anharmonic potential that describes bond stretching. Here,
σ is the equilibrium bond length,∆b ) 0.25σ, kb ) 100ε/σ2, kh

) 2ε, andε is a parameter that sets the energy scale. We use
the bending potential

to vary the polymer’s persistence length by adjusting the value
of the dimensionless bending stiffnessk. Here,kθ ) 4.8ε/rad2

andθi is the angle between the bond vectorsr i - r i-1 and-(r i+1

- r i), whose equilibrium value isθ0 ) π. Finally, excluded
volume effects are incorporated by using a purely repulsive
potential between the beads that are not bonded:

whereS(x) is a step function defined as

The dynamics of the chain were generated by solving the
Langevin equation of the form

wherem is the monomer mass,ê0 is the friction coefficient for
each monomer (whose value is set toê0 ) 2.0(σ2/mε)-1/2), R(t)
is a randomδ-correlated, Gaussian-distributed force satisfying
the fluctuation-dissipation theorem, andVstretch) -f(zL - z1)
is a stretching potential that describes a forcef that pulls the
first and theLth monomers apart. Thez-axis coincides with the
direction of the force. In the following, we report all of our
results using dimensionless units of energy, distance, time, and
force set byε, σ, τ ) (mσ2/ε)1/2, andf0 ) ε/σ, respectively. All
of the simulations were performed at the same temperature equal
to T ) 1.0ε/kB.

The presence of a knot in the chain was monitored by using
the program of Harris and Harvey25 that uses the method of
Vologodskii et al.26 to calculate the Alexander polynomial.
Animations of the simulated dynamics of knotted polymers are
available as Supporting Information.

The Diffusion Coordinate. To describe the movement of
the knot as a one-dimensional diffusion process, we first need
to specify the coordinate along which it diffuses. Two obvious
choices exist: (i) monitor the projectionz of the knot position
on the direction of the applied force, or (ii) monitor the knot
diffusion along the polymer chain by using a discrete monomer
indexn as the diffusion coordinate. In the limit of a very high
force, the two coordinates are equivalent as the shape of the
chain away from the knot region is nearly a straight line. In the
blob regime, the two diffusion coordinates would be drastically
different. Generally, the diffusion projected onto the axisz will
appear to be slower than the diffusion along the chain itself. In
the range of forces used here, the difference is about 15% for
the lowest force used.

Choice (i) may be closer to the experimental measurements.
However, another, more subtle point should be considered. To
use definition (i), one has to specify the reference frame with
respect to whichz is determined. This can be the laboratory
frame, the chain’s center of mass, or the position of one of the
chain ends. The difference between these should disappear in
the limit of a very long chain, where the translations of the
entire chain can be neglected. However, for practical reasons
our chain cannot be too long in a simulation, and for chains of
finite length all three definitions give different results. The
“internal” diffusion coordinate (ii) is, however, uniquely defined
and can be used to determine the time it takes the knot to escape
off the chain ends. For this reason, we use the second choice
for the diffusion coordinate here while keeping in mind that

D =
kBT

Nê0
(1)

V(r1,r2,..,rL) ) Vbond+ Vbend+ Vnonbonded (2)

Vbond) ∑
i)2

L (kb(|r i - r i-1| - σ)2/2 + kh(|r i - r i-1| - σ

∆b )6) (3)

Vbend) k ∑
i)2

L-1

kθ(θi - θ0)2/2 (4)

Vnonbonded) ∑
|i-j|g2

4ε(( σ

(|r i - r j|))
12

-

( σ

|r i-r j|)
6

+
1

4)S(|r i - r j|) (5)

S(x) ) {1,x e 21/6σ
0,x > 21/6σ

(6)

mr1i(t) ) -ê0r3 i(t) -
∂(V + Vstretch)

∂r i
+ R(t) (7)

Knot Diffusion in Tensioned Polymer Chains J. Phys. Chem. A, Vol. 111, No. 41, 200710339



some of the results may be affected by the particular way of
measuring the diffusion coefficient.

Finally, since knots have finite size, we need to specify how
the knot position is described in terms of a single point in space.
To do so, we define the boundaries of the knot region,nl and
nr, as illustrated in Figure 1. The knot coordinate along the chain
is then defined asn ) (nl + nr)/2.

Determination of the Knot Diffusion Coefficient. We have
used two methods of computing the knot diffusion coefficient.
The first method uses the relationship

where the square of the knot displacementn(∆t) - n(0) is
averaged over a series of short-time simulations, with the knot
initially located atn(0). Metzler et al.12 have considered various
knot diffusion mechanisms and have predicted that the diffusion
should become faster near the chain ends. When the knot is
close to a chain end, it can become untied though a cooperative
motion of the dangling chain segment. This untying mechanism
should become increasingly more likely as the distance from
the chain ends becomes smaller than the length of the knot
itself.12 In this regime, however, one cannot view the knot as a
point object, and eq 8 cannot be used to determine the value of
D. For this reason, the diffusion coefficients reported here have
always been calculated in the regime where such boundary
effects could be neglected (i.e., when the knot is sufficiently
far from the chain ends). In this regime, we find that the knot
diffusion coefficient calculated from eq 8 is insensitive to the
knot’s initial locationn(0). Furthermore, we found no significant
dependence of the diffusion coefficient on the overall chain
lengthL.

An alternative way of determiningD is to consider the
probability distributionpesc(t) for the timet it takes for the knot
to escape off the ends of the chain, provided that att ) 0 the
knot was placed in the middle of the chain,n(0) ) L/2. To
avoid the boundary effects mentioned above, instead of con-
sidering the entire chain one can specify a chain segment ((L
- l)/2,(L + l)/2) such that the chain’s extremities are excluded
from the consideration. We place the knot in the middle of the
chain,n(0) ) L/2, and follow its dynamics until it reaches one
of the segment boundaries,n(t) ) (L - l)/2 or (L + l)/2, for
the first time. If the motion of the knot can be viewed as free
diffusion, then the probability distributionpesc(t) of the timet
it takes to reach a boundary can be obtained by solving the free
diffusion equation with absorbing boundary conditions (see
Appendix A) and the value ofD can be obtained from a fit of
the simulatedpesc(t). If the diffusion coefficient along the chain
were not constant or there were a deterministic biasing force
driving the knot in the direction of, or away from, the chain
center, then we would expect to see the simulatedpesc(t) to
deviate from the solution of the diffusion equation with a
constantD. As shown in Appendix A, we could not find any
noticeable deviations from the free diffusion model in the range
of forces studied and the value ofD determined this way was
the same as that estimated from eq 8. Furthermore, we found
that the boundary effects due to the chain extremities have no
noticeable effect onpesc(t). In other words, the probability for
the knot to escape off the chain ends is still described well by
the solution of a one-dimensional diffusion equation with a
constantD whose value is close to that estimated from eq 8.

A tension in a knotted chain compacts the knot. We expect
that the boundary effects predicted in ref 12 would become
pronounced at low or zero tension. However, since in this regime
the knot size would become comparable with the relatively short

chain length used here, the diffusion coefficient in such low-
force limit cannot be meaningfully extracted from the simula-
tions reported here.

3. Results

Knot Trajectories. Animations of knot trajectories obtained
at two different values of the force are available as Supporting
Information. In Figure 2, we show the time dependence of the
knot positionn(t) for two typical trajectories, one taken at a

D ) 〈[n(∆t) - n(0)]2〉/(2∆t) (8)

Figure 1. Snapshots of the knots of different types studied here.
Definition of the knot boundariesnl andnr is also illustrated.

Figure 2. (Top) Typical knot trajectoriesn(t) at low and high forces
(k ) 2 in each case). Circles indicate the stalling events that are observed
in the high-force case. (Middle) Fluctuations in the instantaneous knot
length defined as the chain contour lengthnr - nl between the knot
boundaries for the same trajectories. (Bottom) Fluctuations in the
instantaneous knot lengthN as defined by eq 9 for the same trajectories.
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low-force value and the other at a high-force value correspond-
ing to the tight knot regime. In the latter case, stalling events
are observed, in which the knot becomes trapped in a certain
configuration and then escapes it through a thermal fluctuation.
Also shown in this figure is the time dependence of the
instantaneous knot length for the same trajectories. Two
definitions of the knot length are used, one being simply the
contour length of the chain between the knot boundaries,nr -
nl, and the other is based on the sliding knot model and is
defined below. It is seen that the knot size can fluctuate
significantly and that the knot tends to be tighter during the
stalling events.

Dependence of the Diffusion Coefficient on the Knot
Length. Several knot diffusion mechanisms have been proposed
by others,12,18 involving either cooperative motions of large
portions of the entire chain or local motions of a knot region.
If the knot translation involves concerted motion of a chain
segment that containsN monomers, then the effective friction
coefficient for this segment should beê ∼ Nê0, whereê0 is the
friction coefficient per one monomer (defined in eq 7). We then
expect the effective knot diffusion coefficient to be ap-
proximately given by eq 1. If the local mechanism dominates,
then N should be of the order of the knot length, that is, the
number of monomers engaged in the knot.

To test the validity of eq 1, we then need a way of measuring
the effective knot lengthN. One possibility is to simply use the
contour length of the chain between the knot boundaries,nr -
nl. The problem with this is that our purely geometric definition
of the knot boundaries is somewhat arbitrary. While the average
knot positionn ) (nl + nr)/2 is not significantly affected by
the precise choice of the boundaries, this is not necessarily true
for the knot length.

A more physically meaningful definition of the knot length
that we use here is based on the sliding knot model described
in Appendix B. In this model, the knot slides along the chain
without changing its shape while the chain ends are not moving.
Even in this simple model, different chain segments move with
different velocities soN cannot be simply taken to be the number
of monomers that move. As shown in Appendix B, the total
viscous drag force that acts on the chain when the knot moves
with a velocityV is equal to-ê0NV, whereN is given by

Here∆zknotted and∆zunknottedis the extension of the chain with
and without knot, respectively. In other words, the effective
length of the chain segment involved in the knot motion is the
difference between the lengths of the unknotted and knotted
chains. Coincidentally, this measure of the knot length was used
in ref 18 to estimate the knot length from experimental DNA
knot images. While eq 9 does not give the correct length of the
knotted chain segment,7,18 it turns out to be the proper knot
length measure to be used in eq 1, at least within the sliding
knot model. Since, unlike the sliding knot model, the chain
fluctuates in our case, the knot length measure that we adopt in
practice uses the average chain extensions measured along the
direction of the force for∆zknottedand∆zunknotted. The instanta-
neous knot length used in Figure 2 is obtained by using the
instantaneous value of∆zknotted instead of its mean.

To vary the knot lengthN we now change the bending
stiffnessk (see eq 4) while keeping the applied tension constant.
The resulting dependence of the knot diffusion coefficient onk
is shown in Figure 3. Ask is increased, the chain becomes stiffer

and the knot lengthN becomes larger. According to eq 1, this
should result in a decreasing value ofD. Indeed, we observe a
monotonically decreasingD(k) when the applied tensionf is
sufficiently low. For highf, the observed dependenceD(k) is
non-monotonic, showing a maximum at a certain value of the
chain stiffness.

In Figure 3b we plot the effective friction coefficientê )
kBT/D as a function of the knot lengthN for the same data.
According to eq 1, we expectê to be proportional toN. Indeed,
the dependenceê(N) is close to a straight lineê(N) ) ê0N
(shown as a dashed line in the inset of Figure 3b) for knots that
are not too tight (i.e., for sufficiently largeN). For tight knots
(small N) the behavior ofê(N) is entirely different, showing
the opposite trend for more compact knots to diffuse more
slowly. This behavior of tight knots will be discussed below.

Dependence of the Diffusion Coefficient on the Tension
in the Chain. The tension dependence of the diffusion coef-
ficient is shown in Figure 4a for different values of the bending
spring constantk. When the chain is sufficiently stiff (i.e., its
persistence length is long),D is a non-monotonic function of
the tension. The initial rise ofD(f) at low forces is consistent
with eq 1 since an increased tension tightens the knot thus
reducing its lengthN. This is further illustrated in Figure 4b,
which shows the effective friction coefficientê as a function
of the knot lengthN for the same data. For stiff chains and
large N (i.e., low forcef), we observe thatê is an increasing
function ofN, behaving very similarly to the dependenceê(N)
seen in Figure 3b.

N ) L(1 -
∆zknotted

∆zunknotted
) (9)

Figure 3. (a) The dependence of the diffusion coefficient of the knot
of type 31 on the bending spring constantk for different values of the
tensionf. The units are explained in the Methods section. (b) Same
data as in (a) plotted as the effective friction coefficientê ) kBT/D vs
the knot lengthN. The dashed line is given by the equationê ) ê0N,
whereê0 is the friction coefficient per one monomer (cf., eq 7). Inset:
Same plot with theê scale blown up.
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Both in Figure 3b and in Figure 4b, we find that for certain
values of the bending stiffness and the force, the effective
friction coefficient is somewhatlower thanê ) ê0N (the points
below the dashed line). An effective friction coefficient that is
higher thanê0N can be attributed to the contributions from the
internal friction caused by monomer interactions within the knot,
as those are neglected in eq 1. However finding the effective
friction coefficient to be lower thanê0N is somewhat surprising.
Consideration of chain fluctuations ignored in the sliding knot
model may explain this observation. In particular, fluctuations
of the knot size effectively speed up the diffusion. Indeed, if
the instantaneous knot lengthN fluctuates significantly (cf.,
Figure 2) then the observed value ofD will be the mean
diffusion coefficient〈D〉 ) (kBT/ê0)〈1/N〉. If, for instance, the
distribution ofN is Gaussian (an approximation that is consistent
with simulations), then〈D〉 will be higher than an estimate
obtained from eq 1 by using the mean knot length. The fairly
small diffusion speedup found here is roughly consistent with
an estimate of〈D〉 that takes the knot size distribution into
account. We note, however, that the deviations of real knot
dynamics from the sliding knot model cannot be simply
accounted for by allowing a distribution of the knot sizeN
because both fluctuations of the knot itself and those of the
unknotted segments of the chain affect the instantaneous value
of N and also because knot fluctuations on a time scale
comparable with that of the knot diffusion violate the assump-
tions of the sliding knot model.

Diffusion of Tight Knots. The knot diffusion coefficient
depends on the properties of the chain (such as the bending
stiffnessk) and the tensionf. However, in the tight knot limit
(i.e., smallN) D depends only on the knot sizeN rather than
separately on the tension or the chain flexibility. That is, if we
plot D (or ê) vsN(k,f) for variousf andk, all these dependences
will collapse onto a single curve. In particular, the curvesê(N)
plotted in Figures 3b and 4b are practically identical forN e
11. Moreover, in this limit, unlike the largeN case, more
compact knots move more slowly. How can we rationalize these
findings?

When the knot is tight, “internal friction” of the chain, rather
than viscous friction due to the solvent, dominates its dynamics.
The microscopic origin of such friction is the “bumpiness” of
the energy landscape of the knot caused by the intrachain
interactions.23,24 The knot moves via activated barrier crossing
from one local minimum to another. Indeed, stalling events
where the knot is trapped in a local minimum configuration
are readily observed in Figure 2 for the high-force case. The
barriers encountered in this process depend on the magnitude
of the tension in the chain. The higher the forcef, the rougher
the energy landscape and consequently the slower the diffusion.

Consider now the interactions within a tight knot. The forces
associated with the bending potentialVbendin this limit become
small as compared to the contribution from the repulsive
potentialVnonbonded, which prevents the knot from becoming even
tighter. A compact knot is a physical model of an “ideal” knot
whose size can no longer be reduced7,22except that our compact
knots are somewhat compressible since the repulsive interactions
are continuous rather than hard-wall-type. The energy landscape
in this limit is essentially determined by the repulsive interac-
tions of the monomers within the knot, and it seems plausible
that it would be determined only by the knot size.

Dependence of the Diffusion Coefficient on the Knot Type.
We have computed the diffusion coefficient for several knot
types (shown in Figure 1) and for different values ofk and f.
The results are shown in Figure 5, where the effective friction
coefficientê ) kBT/D is plotted as a function of the knot length
N. The diffusion of the knots of type 31, 51, 52, and 71 is well
described by the relationshipê ∝ N. The bulkier the knot, the
slower it moves. Moreover, the ratioê(N)/N for low forces is
very close to the friction coefficientê0 for a single monomer,
again pointing to the local diffusion mechanism described by
eq 1, which assumes a cooperative motion ofN monomers in
the knot region. The knot of type 41 seems to be an outlier except
at high forces, possibly because of the knot fluctuations or a
higher effective internal friction for this knot.

4. Discussion

Since our polymer model does not directly describe a DNA,
to compare our results with the experimental findings of ref 18
we use reduced units of length and force. The characteristic
length scale is set by the polymer’s persistence lengthlp and
the characteristic force is set byfc ) kBT/lp. Assuminglp ) 50
nm, the forces used by Bao, Lee, and Quake are in the rangef
∼ (1 - 25)fc. For such forces, they found the knot length to be
N = 6lp(for the knot of type 31). To make a crude comparison
with our results, consider the casek ) 1 in Figure 4. At this
value of the bending stiffness, the persistence length of our
polymer is ∼5 monomers, which givesfc ∼ 0.2 in the
dimensionless units used in Figure 4a. We see that the
experimental range of forces roughly corresponds tof < 5 in
Figure 4a. The highest force in this range is close to the
maximum ofD(f).

Figure 4. (a) The dependence of the diffusion coefficient of the
knot of type 31 on the applied tensionf for different values of
the bending spring constantk. (b) Same data as in (a) plotted as the
effective friction coefficientkBT/D vs the knot lengthN. The dashed
line is given by the equationê ) ê0N, whereê0 is the friction coefficient
per one monomer (cf.,eq 7). Inset: Same plot with theê scale blown
up.
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To further validate this comparison we note that the knot
length in this range of forces isN ∼ 3lp for the lowest force
used (cf., Figure 4b), which is comparable with the experimental
knot length (measured in units oflp).

These considerations suggest that the lack of tension depen-
dence of the diffusion coefficient reported by Bao, Lee, and
Quake18may be due to the fact that the experimental forces were
close to the turnover regime, wheresas we see from Figure
4asthe force dependence is weak.

The dependence of the effective friction coefficientê on the
knot type observed in our simulations is very close to that
reported in the experimental study (see Figure 3 in ref 18). Both
the experimental curveê(N) and the dependences shown in
Figure 5 are close to linear. Moreover, the deviations ofê(N)
from a straight line follow the same pattern. Our results are
also consistent with the earlier simulation study by Vologodksii,8

which includes electrostatic effects in DNA.
As seen from Figure 5, the linear dependenceê ∝ N holds

both at low forces (i.e., the elastic regime) and at high forces
(tight knot regime), although the slopes are different. Therefore
the linearity of this dependence alone cannot be used to
distinguish between these two regimes and to establish whether
or not DNA knots are close to ideal.

While the simple model considered here provides useful
insights into the general problem of knot diffusion in tensioned
polymers, a number of potentially important issues pertinent to
DNA and proteins have been left out, particularly the effect of
twisting, electrostatic effects, or of specific intrachain interac-
tions on the knot dynamics. These effects may be particularly
important in tight knots, where the strong constraints applied
to the knot monomers may lead to high sensitivity of the knot
dynamics to the details of the molecule’s energy landscape. We
plan to address these issues in our future studies.
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Appendix A: Distribution of the Knot Escape Time in
the Free Diffusion Model

Suppose the knot’s dynamics can be described as
one-dimensional motion along the knot coordinatex. The
knot starts in the middle of the chain atx ) 0 and is monitored
until it reaches one of the chain boundaries,x(t) ) (l/2.
We are interested in the probability distributionpesc(t) of the
time t it takes the knot to escape the chain segment (-l/2,l/2)-
between the boundaries. To find this, we first calculate the
probability densityp(x,t) for finding the knot atx at time t
provided that it disappears irreversibly upon reaching the
boundaries. This is the solution of the one-dimensional diffusion
equation

with the initial condition

and absorbing boundary conditions atx ) (l/2. The solution
can be conveniently expressed as a series:

The probability distribution of the knot escape time can be
expressed in terms of the knot survival probability:

Figure 6 gives an example of the distribution of the knot
escape time determined from a simulation. The solid line is a
fit that uses eqs A3-A5, with D being used as a fitting
parameter. The free diffusion model fits our data very well.

Appendix B: Drag Force on the Knot Region in the
Sliding Knot Model

Consider a continuous string with a knot tied in it. Here, we
will assume that the knot slides along the string without
changing its shape, as illustrated in Figure 7. The chain segments
that are far away from the knot region are not moving; in
particular, the chain ends are at rest. Assuming that the knot
moves with a velocityV, we would like to calculate the total
viscous drag force that acts on the chain. To do so, it is
convenient to switch to a moving reference frame, in which
the knot itself is at rest while each given point of the string is
moving with a constant velocity along the same curve
(x(s),y(s),z(s)), which defines the constant shape of the knot.
Heres ) s0 - Vt is the position of the point measured along
the string. The shape of the knot curve is such that (x(s),y(s),z(s))
) (0,0,z) far away from the knot region. In other words, the

Figure 5. The effect of the knot type on its diffusion. The effective
friction coefficientê ) kBT/D plotted as a function of the knot length
for different types of knots and for different values of the tensionf
and of the bending stiffnessk. The straight lines shown are least-square
fits with the knot type 41 excluded and are given byê ) aN, wherea
) 2.13, 2.13, 3.26, and 5.33 for (k,f) ) (1,2), (2,2), (2,6), and (2, 10),
respectively.

∂p(x,t)
∂t

) D
∂

2

∂x2
p(x,t) (A1)

p(x,0) ) δ(x) (A2)

p(x,t) )
1

x4πDt
∑

n)-∞

∞

(-1)n exp[-
(x - nl)2

4Dt ] (A3)

S(t) ) ∫-l/2

l/2
p(x,t) dx (A4)

pesc(t) ) -dS/dt ) -D[∂p(x,t)
∂x |x)l/2 -

∂p(x,t)
∂x |x)-l/2] (A5)
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string is a straight line aligned along thez-axis everywhere
except in the vicinity of the knot.

The absolute value of the velocity of any given point of the
string in the moving frame is equal toV while the velocity vector
is given by

The velocity of the same point in the laboratory frame is

The total viscous drag force on the chain is then given by

whereγs is the friction coefficient per unit length of the string
and 1 and 2 denote the chain ends. Combining eqs B2 and B3
we find

where∆z ) ∆zunknotted- ∆zknottedis the difference between the
end-to-end distance of the knotted and unknotted chains. The
drag force is along thez-axis, and its value is proportional to
the difference between the extension of the knotted and the
unknotted chains.

For a discrete chain that consists ofL monomers we can write
γs ) ê0L/ ∆zunknotted (where ê0 is the friction coefficient per
monomer) so that

where the effective number of monomers involved in the knot
motion is given by

Supporting Information Available: Two animations of
knot diffusion. This material is available free of charge via the
Internet at http://pubs.acs.org.
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Figure 6. The probability distribution of the knot escape time fitted
by using the free diffusion model (solid line). The values of the bending
stiffness and the force in the simulation arek ) 2, f ) 4. The knot was
placed in the middle of the chain and monitored until its distance from
the middle attained the valuen(t) ) (l/2, wherel ) 40. The value of
the diffusion coefficient obtained from this fit isD ) 0.0296.

Figure 7. The sliding knot model. The time dependence of the position
of a selected point on the string is shown.
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